

Using Unity for Scientific Visualization as a Course-based Undergradaute Research Experience

Idunnuoluwa Adeniji ^{1,2} Lark Baincaren ¹ Cymantha Blackmon ¹ Michael Casarona ¹ Melissa Menzel ¹ Matthew G. Niepielko ¹ Leonard Bielory ^{1,3,4} Nan Perigo ¹ Joseph Insley ^{2,5} David Joiner ¹

1 Kean University, Union, NJ 2 Argonne National Laboratory, Lemont, IL 3 Rutgers University – Center of Environmental Prediction, New Brunswick, NJ 4 Hackensack Meridian School of Medicine, Nutley, NJ 5 Northern Illinois University, Dekalb, IL

Course-based Undergraduate Research Experiences (CUREs)

- Activities focused on following the research process and performing inquiry is used in addition to or in place of traditional laboratory activity [1]. Positive benefits of CUREs have been seen in
 - professional identity [2]
 - research skills [3]
 - project ownership [4]
 - higher retention [5]
- Our context for implementation is a computational science and engineering program at Kean University, a regional university in northern New Jersey. The program is part of a 5-year combined BS/MS honors program in the School of Integrative Science and Technology.
 - RFI Program: 6 credits research training semesters 1-3, up to 6 credits independent research, 3 credit capstone, 6 credit MS Thesis
- The projects presented in this paper involve development or enhancement of software in Unity Game Engine
 - Volumetric rendering of hyperstack data
 - Performance testing and implementation of point cloud renderers in Unity using VR hardware.

[5]

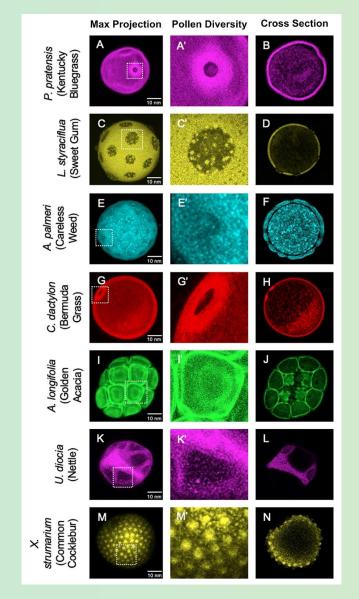
^[1] A. J. Buchanan and G. R. Fisher, "Current Status and Implementation of Science Practices in Course-Based Undergraduate Research Experiences (CUREs): A Systematic Literature Review," *CBE—Life Sci. Educ.*, vol. 21, no. 4, p. ar83, Dec. 2022, doi: 10.1187/cbe.22-04-0069.

^[2] S. E. Brownell *et al.*, "How students think about experimental design: novel conceptions revealed by in-class activities," *BioScience*, vol. 64, no. 2, pp. 125–137, 2014.

^[3] A. Alneyadi, I. Shah, and S. S. Ashraf, "An innovative bioanalytical research project course to train undergraduate students on liquid chromatography–mass spectrometry," *Biochem. Mol. Biol. Educ.*, vol. 47, no. 3, pp. 228–238, 2019.

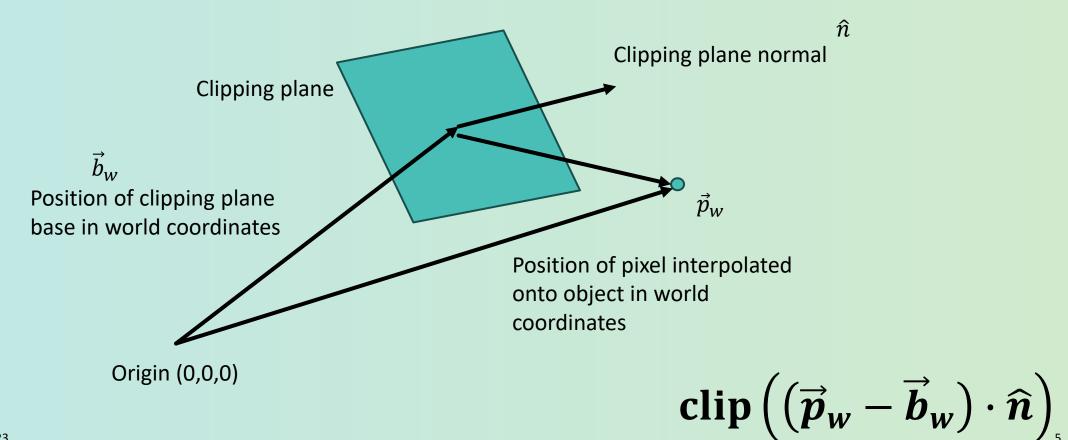
^[4] D. I. Hanauer, J. Frederick, B. Fotinakes, and S. A. Strobel, "Linguistic analysis of project ownership for undergraduate research experiences," *CBE—Life Sci. Educ.*, vol. 11, no. 4, pp. 378–385, 2012.

J. C. Drew and E. W. Triplett, "Whole genome sequencing in the undergraduate classroom: outcomes and lessons from a pilot course," J. Microbiol. Biol. Educ., vol. 9, no. 1, pp. 3–11, 2008.


Project 1: Primordial Germ Cell Viewer

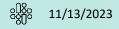
- Partnership with computational biology faculty
- Source of data
 - Leica STELLARIS 5 white light laser system and Leica LIGHTNING
- Goal: Networked scene allowing volumetric rendering and analysis in a shared VR room

_	_	_	_	_	_	_	_	_	_	_
00011	00010	00009	00008	00007	00006	00005	00004	00003	00002	00001
1.27	1.000	10	100	124	1	1	1	ţ.	10	- 4
00022	00021	00020	00019	00018	00017	00016	00015	00014	00013	00012
	-	S.	1	÷.	12	12	12	12	12	at
00033	00032	00031	00030	00029	00028	00027	00026	00025	00024	00023
2.5	4	14	4		4	4		4	1	32
00044	00043	00042	00041	00040	00039	00038	00037	00036	00035	00034
60	61	40	i*	É.	$\hat{t} \in$	É.S	2.5	2.5	2.5	2.5
00055	00054	00053	00052	00051	00050	00049	00048	00047	00046	00045
			*.4585	*-42m	-	4			10	
			00063	00062	00061	00060	00059	00058	00057	00056
				1.11	1	1	1.1.1 M	1.12	1. A 17 10	1.120
			00074	00073	00072	00071	00070	00069	00068	00067
			00085	00084	00083	00082	00081	00080	00079	00078


Project 2: Database of 3D Pollen Grain Images

- Partnership with computational biology faculty
- Source of data
 - Leica STELLARIS 5 white light laser system and Leica LIGHTNING
 - Dry pollen samples were mounted in ProLong Glass (Life Technologies) and imaged using pollen's autofluorescent properties that are produced when exposed to UV.
- Goal: Produce database of volumetric renderings with animation

Project 3: Clipping shader implementation

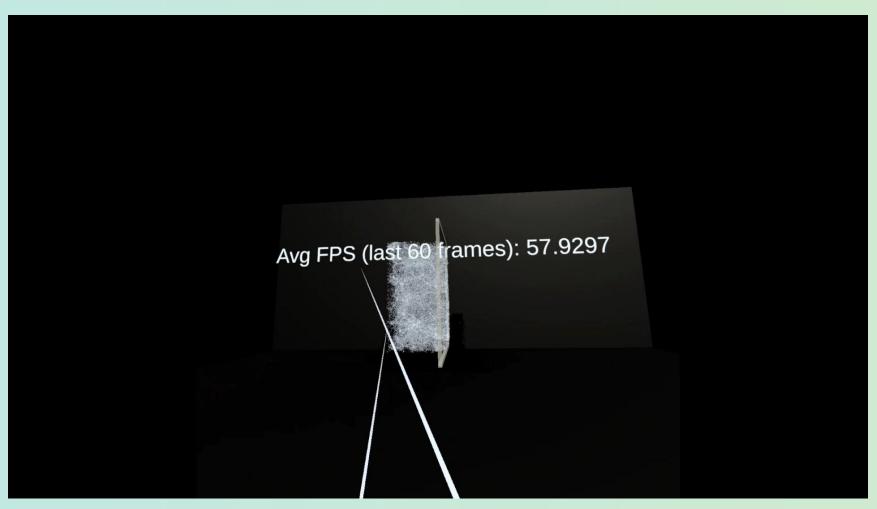

- Student experience in Shader creation, UI design
- Applied to volumetric rendering in other projects

11/13/2023

Project 4: HACC Simulation Visualization

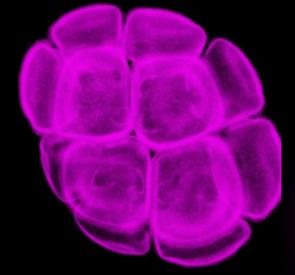
- Student Internship at ANL, after initial work with RFI program
- Project continued through independent research
- Source of data
 - Point cloud data of a grid cell from a larger run
 - 4 million points, evolving over time
- Goal: Produce volumetric rendering in VR using Oculus hardware, coupled with tools for identifying dark matter halos. Explore data pipelines to move from ParaView to Unity.

Enabling Technology

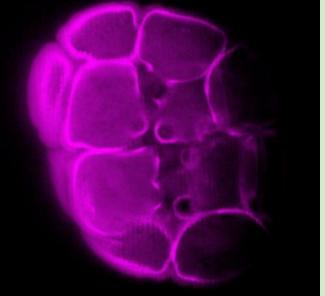

- Each of these projects focused on use of Unity for VR visualization
 - Volumetric Rendering of Hyperstack Images
 - <u>https://github.com/joinerda/HyperstackViewer</u>
 - Images are loaded as sprites, with pixels below a set threshold set to (0,0,0,0)
 - Images are arranged in z-order in Unity scene
 - Double sided unlit transparent shader is applied, with transparency multiplier applied based on intensity of pixel
 - Good frame rates with 1024x1024x100 native Quest app
 - Point Cloud Rendering
 - <u>https://github.com/joinerda/PointCloudRenderer</u>
 - CSV file loader reads data into point topology meshes of 64K vertices each
 - Unlit geometry shader applied to render points as billboard hexagons with or without transparency (Note, newer Macs do not support geometry shaders)
 - Good frame rates with 1M points native Quest app, 10M points link cable + gaming PC

DEMONSTRATIONS


VIDEO 1: Golden Acacia Pollen Grain as an Image Stack with clipping



VIDEO 2: Large Scale Structure Simulation Data as Point Cloud with clipping



Student Results

Considerations

- VR based visualization can be an accessible starting point for many students just engaging in research
- Unity+Quest can provide a low cost option for project work
 - Compile directly to headset instead of using link cable fewer restrictions on student hardware
- Unity is well suited to typical student curriculum
 - Lots of beginner-focused self-guided tutorials
 - Students with Java background will find C# very familiar
- Deprecation of OpenGL support for M-series macs does require a work-around for some shaders, but students can still compile and test on Quest from Mac hardware

Reproducibility

- Unity Version for tests: 2021.3.8f1
- AR Foundation 4.2.8
- Oculus XR Plugin 3.0.2
- OpenXR Plugin 1.4.2
- XR Interaction Toolkit 2.3.2 <u>https://www.youtube.com/watch?v=Qm_o9kcH_HI</u>
- Android Graphics API OpenGLES3.2 w/ Linear color space
- OpenXR Plugin used for PC+Link Cable
- Oculus Plugin used for Android
- Multi-Pass Rendering for both plugins

Thank You!

800 11/13/2023